13 research outputs found

    A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell

    Get PDF
    Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions.Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progressio

    Establishing a large prospective clinical cohort in people with head and neck cancer as a biomedical resource: head and neck 5000

    Get PDF
    BACKGROUND: Head and neck cancer is an important cause of ill health. Survival appears to be improving but the reasons for this are unclear. They could include evolving aetiology, modifications in care, improvements in treatment or changes in lifestyle behaviour. Observational studies are required to explore survival trends and identify outcome predictors. METHODS: We are identifying people with a new diagnosis of head and neck cancer. We obtain consent that includes agreement to collect longitudinal data, store samples and record linkage. Prior to treatment we give participants three questionnaires on health and lifestyle, quality of life and sexual history. We collect blood and saliva samples, complete a clinical data capture form and request a formalin fixed tissue sample. At four and twelve months we complete further data capture forms and send participants further quality of life questionnaires. DISCUSSION: This large clinical cohort of people with head and neck cancer brings together clinical data, patient-reported outcomes and biological samples in a single co-ordinated resource for translational and prognostic research

    B cell zone reticular cell microenvironments shape CXCL13 gradient formation

    No full text
    Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients
    corecore